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In systems characterized by a rough potential-energy landscape, local energetic minima and saddles define a
network of metastable states whose topology strongly influences the dynamics. Changes in temperature, caus-
ing the merging and splitting of metastable states, have nontrivial effects on such networks and must be taken
into account. We do this by means of a recently proposed renormalization procedure. This method is applied to
analyze the topology of the network of metastable states for different polypeptidic sequences in a minimalistic
polymer model. A smaller spectral dimension emerges as a hallmark of stability of the global energy minimum
and highlights a nonobvious link between dynamic and thermodynamic properties.
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I. INTRODUCTION

The dynamical behavior of polymers in the collapsed
phase has been a field of active research since the concepts
of � solvent and collapse transition were introduced by
Flory �1� in the early 1950s. In the last decades many statis-
tical mechanical analyses of polymer models have been car-
ried out �2�, studying configurational plasticity and dynam-
ics, and their dependence on the microscopic details of the
physical interactions between monomers and with the sol-
vent. However, the inherent frustration of these models often
hinders analytical approaches, and even the investigations of
very simple polymer models still have to be undertaken on a
numerical basis. This fundamental difficulty also affects the
study of an important class of heteropolymers, namely, pro-
teins. According to their sequence these molecules fold into a
unique tridimensional structure, the native configuration,
which corresponds to the minimum of the potential energy.
Natural proteins show a remarkable variety of folding behav-
iors. Folding times might span a couple of orders of magni-
tude even for proteins of comparable size �3� and folding
kinetics of very similar proteins might change from two
stages to more complex multistage transition schemes �4�.
Moreover, in the last 20 years, the development of combina-
torial methods of protein synthesis has allowed the experi-
mental verification of an old paradigm of protein science:
random sequence polypeptides very rarely fold �5�. It is,
however, still not clear how exactly proteins differ from ran-
dom heteropolymers and how these in turn differ from a
homopolymer.

Minimalistic models might be useful in attacking such
basic questions because they can be investigated more easily
than complex and more realistic models. Since the proposal
of the first on-lattice protein model �6� several protein mod-
els have proven capable of qualitatively reproducing the
main thermodynamic features of the folding process, such as

the folding and �-transition temperatures, while taking into
account the effect of different primary sequences �7�. Most
of these models exhibit a funneled energy landscape charac-
terized by the presence of many competing local minima of
the potential energy �8�, in strict analogy with structural
glasses �8–10�. In this framework the folding properties of a
given protein sequence are often depicted as arising from the
interplay between funnel steepness �the global bias toward
the native configuration� and the landscape roughness �the
number and average depth of energy minima�. More pre-
cisely each protein is characterized by a well-defined tem-
perature range in which it manages to attain its native struc-
ture. When this range is sufficiently large the corresponding
sequence can be defined a “good folder”. The same definition
is often applied also to fast folding sequences, in analogy to
the short folding times that generally characterize real pro-
teins. The relations between the folding properties of pro-
teins and the topography of their energy landscape have been
investigated at length leading to the evidence of complex
kinetic behaviors �11,12� and to the proposal of several cri-
teria for the identification of fast folders using equilibrium
indicators �13,14�.

A very promising method for analyzing the topography of
energy landscapes is representing them as a network. Dy-
namic trajectories on rough energy landscapes typically ex-
hibit a separation of time scales in the sampling of the avail-
able configurational space. The first-order saddles of the
potential that connect the basins of attraction of different
minima also represent kinetic bottlenecks for the system and
usually induce a partitioning of the configuration space in a
finite set of metastable states, each characterized by a large
escape time and a fast local diffusivity. In this paper we will
stress that a metastable state in a system at finite temperature
can either correspond to the basin of attraction of a single
minimum of the potential energy or, more generally, to a
collection of different minima linked by low-energy saddles.
Under these conditions the long-term dynamics of the system
consists of a series of activated jumps between different
metastable states. Trajectories can therefore be described by
a master equation which depends only on the transition rates*bongini@fi.infn.it
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between different metastable states �15�. In this context the
investigation of the statistical and topological properties of
the graph representing the network of connections between
metastable states, which will be referred to as NMS, provides
a tool for describing the structural organization of the land-
scape and its influence on the folding dynamics.

Preliminary work on a two-dimensional toy model �16�
has shown that there are quantitative differences in the to-
pography of the energy landscape of heteropolymers and ho-
mopolymers. Differences are found also between fast folding
and slow folding heteropolymers. However, although the
model used in �16� correctly shows all the distinctive ther-
modynamic phases expressed by random heteropolymers and
proteins, its two-dimensional character raises serious con-
cerns about its capability of reproducing the conformational
flexibility of real polymers. One of the goals of this work is,
therefore, to explore the topography of the energy landscape
of different polymers and heteropolymers using a more real-
istic, although still minimalistic, representation.

In this paper we investigate the topology of the NMS of
the energy landscape of different sequences in a minimalistic
three-dimensional off-lattice polymer model. In Secs. II and
III we describe the model and the technique employed to
sample the relevant fixed points of the energy landscape. In
Sec. IV we present a renormalization procedure suitable to
group the basins of attraction of the existing minima of the
potential energy into temperature-dependent metastable
states. In Sec. V we briefly discuss the thermodynamic prop-
erties of the systems while in the following sections we ana-
lyze the topology of their NMS. More precisely, in Sec. VI
we detail the change in topology for increasing chain length
in hydrophobic homopolymers, and in Sec. VII we investi-
gate the topological differences between the NMS of two
heteropolymeric sequences characterized by very different
stabilities of the native structure.

II. MODEL

We consider an off-lattice coarse-grained model for short
peptides that has been recently studied by Clementi and co-
workers �17–19�. The model describes a linear molecule with
N residues, each one representing the position x�i of a C�

atom. The bond vectors r�i are x�i+1−x�i, with length ri= �r�i�.
Following the notation of Ref. �19�, we define also the dis-
tances ri,j = �x�i−x� j�. An angle between subsequent bonds r�i
and r�i+1 is denoted by �i, while �i is the dihedral angle
formed by the residues i , i+1, i+2, i+3. The potential energy
has already been discussed in appendices of Refs. �17,19�. It
is composed of the following contributions:

V = Vbond + Vang + Vdih + VLJ. �1�

One has a bond term

Vbond = kr�
i=1

N−1

�ri − ri
�0��2, �2�

an angular term

Vang = k��
i=1

N−2

��i − �i
�0��2, �3�

a dihedral term

Vdih = �
i=1

N−3

�k�
�1��1 − cos��i − �i

�0��� + k�
�2��1 − cos 3��i − �i

�0���� ,

�4�

and a Lennard-Jones term

VLJ = �1 �
�i,j��C

�	5
�i,j

ri,j
�12

− 6
�i,j

ri,j
�10� + �2 �

�i,j��C

�
�0

ri,j
�12

.

�5�

The notation �� refers to a sum over pairs i , j with j− i
�4, i.e., over pairs of residues that are not consecutive to
each other on the chain. The choice of the contact map C, of
the constants ri

�0� ,�i
�0� ,�i

�0�, and of the distances �i,j, deter-
mines the kind of the peptide; the values chosen for these
constants as well as for the remaining ones are reported be-
low.

In this paper we aim at understanding relations between
the topography of the energy landscape of a polymer and the
topology of its NMS. We also investigate how these features
are influenced by the conformational stability and the size of
the system. We have therefore analyzed three cases: two het-
eropolymers with N=12 monomers characterized by �a� a
highly stable native configuration �which from now on we
will call the stable folder�, �b� a highly unstable native con-
figuration �which from now on we will call the unstable
folder�, and �c� a hydrophobic homopolymer with 4	N
	12.

The latter has been considered because it represents a sys-
tem amenable to be studied at different sizes without intro-
ducing nonobvious sequence dependent effect, as one would
do with heteropolymers. As a stable folder we chose a
�-helix studied in �19�. Analogously to real helices, this sys-
tem is characterized by a strong energetic bias toward the
native configuration, granted by a Go-like potential with
Ci,j =1 only for j= i+4 that mimics the hydrogen bonding
responsible for helix stabilization. On the contrary the un-
stable sequence was chosen as the portion from residue i
=8 to residue 17 that forms a betasheet in the model consid-
ered in �17�. This segment is stabilized by interactions with
residues not included in our selection and is therefore highly
unstable and substantially unstructured when isolated.

Finally for homopolymers we used Ci,j =1 �still with j
� i+4� to induce a generic attraction between residues, and
parameters have been homogeneously fixed for all residues
to ri

�0�=3.8, �i
�0�=1.6, �i

�0�=0.88, �i,j =6.30, �0=3, �1=10,
and �2=5�1. In all cases �a�–�c�, the dihedral potential has a
main minimum and two side minima and the values of the
constants ks in the various contribution to the potential are
proportional to those of Ref. �19�: kr=418.41, k�=83.682,
k�

�1�=4.1841, and k�
�2�=2.092.
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III. SAMPLING THE LANDSCAPE

The energy landscape of each polymer has been explored
by means of a new take on the activation relaxation tech-
nique �ART� �20,21�. The original ART is a method to jump
from a minimum of the potential energy to a neighboring one
and so on with a sort of random walk until the space of
minima has been satisfactorily explored. Each local mini-
mum is characterized by a positive curvature of the energy
function in all directions. The matrix with the second partial
derivatives of the potential energy is the Hessian H, and at a
minimum it has all non-negative eigenvalues. The escape
from a minimum with the ART goes via an activation that
attempts to find first a nearby saddle in the energy landscape.
This is done by slowly forcing the chain in a random direc-
tion of the 3N-dimensional configuration space until a nega-
tive eigenvalue of H arises. The direction of the negative
eigenvalue is then followed until the force vanishes, which
indicates that a saddle point of the energy function has been
reached. By a gentle push to the other side of the saddle and
with a subsequent minimization, eventually a new minimum
is reached. The new found minimum is then added to the
catalog of minima if not already present. The same is done
for the saddle with a separate catalog. In our case, configu-
rations of the newly recovered minima and saddles are com-
pared to the already recorder ones by means of a contact
distance analogous to that described in �13�.

In our model, as in other polymer models where ART has
been used �22–24�, one cannot deform a configuration at
random during activation because the action of the strong
spring force �with constant kr
k�
k�

�1�� prevents the system
from accurately following the direction of the negative ei-
genvalue. Indeed, upon forcing the bond potential Vbond with
a random deformation, the configuration always bounce back
to the minimum without reaching any saddle. We have thus
chosen to perturb only one dihedral angle at a time, while the
rest of the molecule is allowed to deform according to the
potential in order to find the minimum energy compatible
with the imposed dihedral. When a negative eigenvalue is
found, it is followed with a deformation along the same di-
rection, while energy is still minimized in the orthogonal
directions, as in usual ART. This is the point that indeed fails
if the random deformation is performed.

Contrary to usual ART, our approach involves a finite
amount of possible deformations because only 2�N−3� pos-
sible changes in dihedral angles can be tried. This feature is
not intended to promote a random diffusion in the space of
minima, as in standard ART implementations but rather to
implement a systematic protocol for the cataloging of all
saddles and minima. More precisely we adopt the following
procedure: starting from an initial catalog with just one mini-
mum, we try all possible activations from single dihedral
deformations of that configuration. For each transition to an-
other minimum, as before, we check whether the minimum is
already in the catalog and eventually add it �and the same for
the saddle�. After all deformations for the first minimum
have been attempted, we repeat the process from the second
minimum of the catalog and so on. The algorithm stops at the
Mth minimum if no new minima are found. At this point the
catalogs of minima and saddles are considered complete.

One can view the whole process as an attempt of exact enu-
meration of minima and saddles. The choice of a finite set of
activation moves, which might in principle lead to poor sam-
pling of the configuration space, is justified in our case by
the limited number of essential degrees of freedom �the N
−3 dihedral angles�.

Another delicate numerical issue is how to precisely fol-
low the negative eigenvalue direction: if the negative eigen-
value direction is followed soon after it has been detected,
the configuration could bounce back to the minimum, and
consequently one could miss a saddle. To avoid this problem,
the dihedral deformation is continued until the negative ei-
genvalue is lower than a small threshold e�0. In principle
this procedure might exceedingly deform the configuration
and lead to a saddle that does not belong to the basin of the
minimum where one has started from. However, cross
checks in the transitions from and to minima indicate that
this effect, if present, is very small.

A substantial portion of the algorithm we used is based on
software downloaded from Mousseau’s webpage �25�, ver-
sion 2006. This software is portable and allows for an easy
replacement of the energy function, which was for Lennard-
Jones clusters of atoms in origin.

IV. RENORMALIZATION

As already noted in the introduction, the modeling of
polymer dynamics as a hopping process relies on the exis-
tence of a separation of time scales. The configuration space
of many systems at sufficiently low temperature, such as
collapsed globules and glasses, can be partitioned into meta-
stable states, regions whose internal sampling time is signifi-
cantly lower than the escape time. In the traditional double-
well picture it is straightforward to identify such regions as
the basins of attraction of different local minima of the po-
tential energy and the crossing of the first-order saddle that
separate them as the time-limiting step in the exploration of
the landscape. This picture, however, fails to correctly repro-
duce the appropriate division of time scales in more complex
potential energy landscapes with many minima separated by
energy barriers that span a wide range of energies. In these
cases many minima of the potential energy are separated
from their neighbors by saddles that are much lower than the
available thermal energy and therefore fail to represent effec-
tive kinetic bottlenecks. In these conditions metastable states
do not consist anymore of single minima of the potential
energy but are instead composed of a collection of basins of
attraction of different minima separated by small activation
energies. Figure 1 illustrates how the configuration space
partitioning into metastable states depends on temperature:
the shaded areas in the figure represent the regions mostly
visited due to thermal agitation, while the rest of the land-
scape is only rarely explored. An energy barrier large enough
to dynamically isolate the basins of attraction of two differ-
ent minima A and B at low temperatures might not represent
a relevant kinetic barrier at higher temperatures anymore.
Hence the two minima must be considered as belonging to
the same metastable state A�B. Only in the zero-
temperature limit a metastable state corresponds to the basin
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of attraction of a single local minimum of the potential en-
ergy. In this case the NMS can be easily determined as the
graph whose nodes are the potential-energy minima and the
links are first-order saddles connecting their basins of attrac-
tions.

In order to determine the NMS at a given nonzero tem-
perature we employ the recursive renormalization procedure
proposed in �16�. Its main ingredient is the single coales-
cence step illustrated in Fig. 2: if one of the energy barriers
separating node 1 from node 2, W12 or W21, is smaller than
the current temperature, the two nodes coalesce together
forming a new node A. Between the possible paths from and
to the new node, those with minimal energy barrier are ki-
netically the more relevant. We chose therefore to consider A
as connected to the rest of the NMS only by means of the
minimal energy connections. For example, considering node
3 in Fig. 2, the relevant connection would be WA3
=min�W13,W23� and W3A=min�W31,W32�.

The actual implementation of the algorithm is as follows.
First of all, we sort all connections in ascending order ac-
cording to their energy barrier. Then, starting from the first
connection, we apply the following iterative procedure to all
connections whose energy barrier is lower than the reference
temperature:

�i� The minimal energy node connected by the selected
saddle is identified and its label replaces the label corre-
sponding to the other node interested by the connection in
the entire connections database.

�ii� The database of connections is searched for eventual
multiple connections between the same pairs of nodes. When
such connections are found only the one characterized by the
lowest-energy barrier is kept and the other ones are erased.

�iii� The selected connection is finally erased from the
database.

This renormalization algorithm allows us to determine the
NMS at any given temperature starting from the zero-
temperature NMS. As already stressed, the surviving nodes
do not represent minima anymore but collections of minima
that are best interpreted as metastable states.

We notice that in general the renormalization process
tends to increase the average connectivity of the NMS since
the new node emerging from the coalescence of two neigh-
boring nodes inherits all their connections. This effect, how-
ever is partially mitigated by the presence of shared connec-
tions between the coalescing nodes. Defining the average
connectivity c as the average number of links per node and
calling k the number of shared connections between two coa-
lescing nodes, it can be easily shown that c will decrease
upon renormalization only if k�c−2.

The large scale dynamics of the original molecular model
is now suitably described by a diffusion on the NMS. This
process is governed by a linear master equation

dPi�t�
dt

= − WPi�t� , �6�

where Pi�t� is the probability of residing on the ith node of
the graph at time t, while W is a temperature-dependent La-
placian matrix whose elements are determined by the rates of
transition between different nodes,

Wij = 
i,j�
k=1

N

� jk − � ji, �7�

with � jk being the probability per unit time of a transition
from node j to node k.

If the NMS is globally connected, the Laplacian matrix
has only one eigenvector with zero eigenvalue corresponding
to the stationary probability distribution on the graph. More-
over, it can be shown that the Laplacian matrix of the zero-
temperature NMS is semipositive definite, and direct compu-
tations show that this feature is conserved by the
renormalization procedure �16�. As a consequence, Eq. �6�
describes the relaxation to equilibrium on the graph.

By dropping the kinetic information � jk one can define a

discrete Laplacian matrix W̄ given by

CA B

low T

BUA

high T

C

FIG. 1. �Color online� Sketch of temperature dependence of the
partitioning in metastable states in a three-well potential model. At
low temperature the saddle separating the minima A and B is suf-
ficiently high to provide a separation of time scales. When thermal
agitation increase, the explored regions around the minima of the
energy landscape �shaded areas� become wider.
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13
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FIG. 2. Coalescence of two nodes. If one of the energy barriers
separating 1 from 2, W12 or W21, is smaller than the reference tem-
perature, the two nodes coalesce together forming a new node A
that is connected to node 3 by a single energy barrier, which is
min�W13,W23� to go from A to 3, and min�W31,W32� to come back
from 3 to A.
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W̄ij = 
1 if �ij � 0

0 if �ij = 0
� �8�

that can be interpreted as describing the process of relaxation
to equilibrium in a time unit corresponding to the number of
jumps between different nodes. We will see later that the
spectral properties of the discrete Laplacian matrix provide
useful insights on the topological properties of the NMS.

V. THERMODYNAMICS

In order to assign a clear quantitative meaning to the tem-
perature scale in our model we determine the folding transi-
tion and the �-transition temperatures of each sequence. The
use of the term “transition” in this context must be clarified.
The systems we study are far from the thermodynamic limit
so that no sharp thermodynamic transition occurs and a tran-
sition temperature is not rigorously defined. Nonetheless, a
change in the thermodynamic behavior does occur in a rela-
tively narrow temperature range so that it is customary to
refer to a “�-transition temperature” and a “folding tempera-
ture” even for short polymers. When the transitional phe-
nomenon under investigation has a sharp counterpart in the
thermodynamic limit �as is the case with the � transition� the
finite-size transition temperature is determined using meth-
ods which would give the correct result in the thermody-
namic limit. The case of the folding transition is different
because it does not have a thermodynamic limit counterpart
�26,27�, and various methods have been proposed to give a
definition of a folding temperature, which typically yield
comparable results �14�.

For convenience we measure the temperature in multiples
of kB, which is then formally set as kB=1. The folding tran-
sition was primarily determined by using the “50% crite-
rion:” the system at its folding temperature has equal prob-
ability of residing in the native structure as outside of it. As
far as the �-transition temperature is concerned, one should
in principle be able to easily determine it by the presence of
maxima of either the specific heat Cv or of the derivative of
the gyration radius with temperature, R�=�TR. An estimate
of these quantities can be easily computed by expanding the
potential energy at the second order in the fixed points. The
partition function of the system can then be expressed as a
sum over all minima:

Z��� = �
i

e−�Vi

�i
, �9�

where Vi is the potential energy of minimum i and �i is the
product of nonzero eigenfrequencies of the relative Hessian
Hi. If we translate this in a local entropy Si=−kB ln �i, the
probability of residing in the ith minimum can be written as
a function of the local free energy Vi−TSi,

pi��� =
1

Z���
e−��Vi−TSi�. �10�

For a given configuration-dependent quantity �, the average
value on the landscape can then be expressed as

������ = �
i

�ipi��� . �11�

In this contest quantities such as the specific heat Cv
=��E� /�T and the average gyration radius �mean-square dis-
tance of the chain elements form their center of mass� can be
computed once the configurations corresponding to each
minimum are known. The quality of this approximation has
been thoroughly tested for several rough energy landscapes
�8,9� showing, as far as protein models are concerned, a rea-
sonable accuracy at temperatures comparable with the fold-
ing and � transitions �28�.

Clearly the definition of the folding transition based on
the 50% criterion suffers of eventual ambiguities in the de-
termination of the native configuration. The homopolymers
that we model tend to be affected by this problem. Due to the
fact that the energy of homopolymers is invariant upon
chain-reversal, the minima of the potential have a symmetric
image, excluding those for which the two symmetric images
coincide. We find that the probability that the absolute mini-
mum has a nonsymmetric configuration are very high and in
the sequences analyzed only the hydrophobic homopolymer
of length N=10 does not fall in this category. In all other
cases energy has two symmetric global minima, and they
must both be used in order to correctly implement the 50%
criterion described above. Analogously, due to the finite size
of the systems under study, also the determination of the
�-transition temperature might be strongly affected by the
parameter used to define it �14�. In this model the two con-
sensus choices, Cv and R�, give very similar indications.
More precisely, for each sequence analyzed, the specific heat
shows two maxima, and the lower one in temperature always
coincides with Tf as determined by means of the 50% crite-
rion. R� might instead show either two maxima, or a pro-
nounced minimum and a maximum, the minimum always
appearing at lower temperature than the maximum. The
high-temperature maximum almost coincide with the second
maximum of the specific heat, thus reinforcing the interpre-
tation of the latter as a sign of the � transition. Also the first
minimum or maximum always occurs at the same tempera-
ture as the first peak of the specific heat, which, as we al-
ready noted, corresponds to Tf. Figure 3 shows this agree-
ment between Cv and R� for the hydrophobic homopolymer
of length 12, while Fig. 4 shows an example of negative R�
peak at Tf occurring for the unstructured heteropolymer.

An inspection of the gyration radii of individual minima
shows that a negative R� peak appears when the native mini-
mum does not have the minimal gyration radius. As a con-
sequence, the gyration radius might decrease as soon as the
system starts exploring other configurations, eventually in-
creasing again when higher temperatures force it toward
swollen conformations. In both cases the presence of either a
minimum or a maximum in R� amounts to a change in con-
vexity of the R versus temperature and, once again, signals
that the system is undergoing a significant change in its con-
figurational trends.

The �-helix-like heteropolymer shows instead only one
peak in the specific heat �Fig. 5�. This thermodynamic be-
havior is akin to what observed in similar systems �29�,
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where no molten globule state could be detected. In those
cases T� and Tf coincide. Therefore, this sequence is struc-
turally very stable, its native configuration being dominant
even at temperatures almost as high as the temperature of
thermal unfolding. Also in this case the derivative of the
gyration radius shows a minimum corresponding to the fold-
ing transition since the native state is an elongated helical
structure while other minima have a smaller gyration radius.

In order to illustrate the agreement between the different
criteria for the determination of Tf in Table I we report the
folding temperature as computed by means of the 50% cri-
terion and relying on the first maximum of the specific heat.
T� is also reported.

It is interesting to notice that the ratio between Tf and T�,
which might be considered as a relative measure of the sta-
bility of their native structure, is approximately the same
�4–5� for the homopolymer of length 12 and the unstable
folder.

This table also reveals an interesting feature of the ther-
modynamics of homopolymers and its dependence on the
system size: while T� grows with the polymer length �hydro-

phobic compaction is modeled by two-body interactions
whose effect grows with the chain length�, Tf does not show

any well defined trend and oscillates around a fixed value T̄f.

The value of the temperature T̄f �1.1 determined by using

probabilities is slightly lower than the value T̄f �1.4 deter-
mined by using the specific heat.

In order to show that the energy landscape of homopoly-
mers of different length has basically the same shape apart
from a scaling factor N2, in Fig. 6 we report the histogram

��V̄m� of the rescaled potential V̄=VN−2 in each minimum.
The histograms of the homopolymers of lengths N
=10,11,12 collapse onto the same curve. It must however be
stressed that, since the Lennard-Jones potential is short
range, the number of units that can possibly interact with a
given monomer is limited. As a consequence, for large sys-
tems we expect the energy to scale linearly with the chain
length N. The almost perfect �N2 scaling observed signals
therefore that the systems studied are still very small, their
linear dimension being comparable to the Lennard-Jones
range.

In order to clarify the other observed trend, the indepen-
dence of Tf on systems size, we preliminary observe that

TABLE I. Folding and �-transition temperatures for the se-
quences under study. Folding temperatures are determined by
means of the 50% criterion �Tf ,0� and relying on the first peak of the
specific heat �Tf ,1�. Near Tf ,0 we report in brackets the number n of
minima used to determine it.

Tf ,0

�n� Tf ,1 T�

Stable12 3.95�1� 4.2 4.2

Unstable12 0.21�1� 0.33 1.5

Homo12 1.25�2� 1.6 6.5

Homo11 1.1 �2� 1.4 4.2

Homo10 0.6 �1� 0.6 3.1

Homo09 1.3 �2� 2.0 2.5

Homo08 1.0 �2� 1.0 0.9
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FIG. 5. Specific heat �circles� and derivative of the gyration
radius �squares� as a function of temperature for the stable het-
eropolymer. To ease comparison both quantities are normalized to
maximum of their absolute value.
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FIG. 3. Specific heat �circles� and derivative of the gyration
radius �squares� as a function of temperature for the hydrophobic
homopolymer of length 12. To ease comparison both quantities are
normalized to their maximum value.
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FIG. 4. Specific heat �circles� and derivative of the gyration
radius �squares� as a function of temperature for the unstable het-
eropolymer. To ease comparison both quantities are normalized to
their maximum value.
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increasing the system size leads to a fast increase in the
landscape roughness especially if measured in terms of num-
ber of minima and saddles. Figure 7 shows that, as expected
in these systems, Nmin grows exponentially with the chain
length N. The same holds for the number of saddles Nsad but
with a different algebraic correction. Indeed, the ratio be-
tween these two quantities, which corresponds to half the
average connectivity of the NMS, grows linearly with N �see
inset in Fig. 7�.

It must now be noted that not only the number of minima
increases with system size but also the total volume of the
available configurational space does so. It is thus reasonable
to expect that their ratio, the average volume of the basin of
attraction of each minimum, will also experience an expo-
nential dependence from N. The logarithm of the volume of
an attraction basin corresponds to its entropy. As already
mentioned, this can be estimated according to a second order
approximation in the local energy minimum:

S = − kB �
k

3N−6

ln��i
�k�� , �12�

where the �i
�k�s are the 3N−6 nonzero eigenfrequencies—

i.e., square root of the eigenvalues—of the Hessian matrix in
the minimum i. In Fig. 8 we report the histograms of the
entropies for homopolymers of various length after rescaling
by a factor N−1.15. The rescaling factor was chosen in order to
force the collapse of all histograms onto a single curve and
witnesses an approximately linear dependence of the average
basin entropy on chain length.

As far as the folding temperature is concerned, we recall
that Tf indicates the point where the free energy of the native
configuration is approached also by other minima. An in-
crease in the system size would therefore produce two coun-
teracting effects on Tf. On the one hand the average steep-
ness of the landscape will increase, thus increasing the
energetic gap between the native configuration and its neigh-
bors, on the other hand the total number of minima will also
quickly increase, compacting minima in the configuration
space and consequently in energy.

Finally we note that the distribution ��Vs� of the first-
order saddles energies Vs shows a dependency on system size
very similar to that of the energy of the minima �data not
shown�. It is therefore tempting to picture the effect of in-
creasing chain lengths as a simple isometric stretching of the
energy landscape as could be attained by multiplying energy
by a constant factor. This picture apparently clashes with the
observation that the profiles of the histograms of the energy
barrier heights W are pretty similar for all chain lengths, and
consistent with the same exponential function �see Fig. 9�.
Also this effect, however, can be accounted for by the quick
growth of competing minima. The appearance of new
minima helps breaking conformational transitions in more
substeps, thus counteracting the general quadratic increase in
their energetic cost.
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FIG. 6. Histogram of the rescaled potential V̄ of the minima of
the potential energy for the homopolymers of lengths N
=10,11,12. The rescaling factor is N−2. The circles radius is pro-
portional to N.
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FIG. 7. Number of minima Nmin �circles� and saddles Nsad
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minima of the potential energy for the homopolymers of lengths
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VI. HYDROPHOBIC HOMOPOLYMERS: TOPOLOGY
AS A FUNCTION OF TEMPERATURE

AND SYSTEM SIZE

The thermodynamic properties analyzed so far only de-
pend on the distribution of the minima of the potential en-
ergy. In order to account for the trends observed in the fold-
ing and �-transition temperature we were led to analyze in
some detail the chain length dependence of the energy land-
scape both in terms of minima and connection saddles. Since
potential-energy minima correspond to nodes of the zero-
temperature NMS and saddles correspond to its links, the
results of the previous analysis might be rephrased in terms
of an exponential growth of the graph degree with system
size and a linear growth of its average connectivity. We will
now extend this analysis to the finite-temperature NMS.
More precisely we will focus on the combined effects of
temperature and systems size on the topology of the NMS
for homopolymers.

The first quantity affected by the renormalization process
is obviously the graph size. The total number of nodes for
each homopolymer is reported in Table II for various tem-

peratures corresponding to fixed multiples of T̄f �the average
folding temperature for homopolymers, determined using the

peak in the specific heat� namely, 0.5T̄f, T̄f, and 1.5T̄f. Graph
sizes appear to decay exponentially with temperature, with a

decay rate growing approximately linearly with the chain
length. A similar, yet more irregular, decay can be observed
in the number of links of the renormalized graph reported in
Table III.

In order to understand whether the process of node coa-
lescence that causes the NMS to shrink with temperature
proceeds uniformly on the NMS, we analyze the temperature
dependence of the multiplicities mi of each node, i.e., the
number of nodes of the zero-temperature graph that coa-
lesced into the i-th node. In Fig. 10 we report the histograms
of mi for the N=12 homopolymer at various temperatures.
The isolated column developing on the right of the figure
represents the multiplicity of the minimal energy node that is
growing at the expense of the nodes with intermediate mul-
tiplicity �mi�10�. The low multiplicity nodes are almost un-
affected. These observations suggest that low saddles are
highly localized around the bottom of the energy landscape.
Concerning the latter point, we recall that two nodes coa-
lesce when they are separated by a link corresponding to a
saddle of energy lower than the current temperature. If the
majority of nodes tend to coalesce on the minimal energy
node, it means that this node is, at every temperature, the one
characterized by the lowest-energy connections. Further-
more, the fact that isolated nodes of intermediate multiplic-
ity, i.e., isolated regions of the landscape characterized by the
presence of low-energy saddles, end up very early in the
minimal energy node reinforces the above picture on the lo-
calization of low-energy saddles.
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FIG. 9. Histogram of energy barriers W between connected
minima for homopolymers with N=10,11,12. The symbol size in-
creases with N. Inset: distribution of energy barriers for the unstable
folder �squares�, stable folder �circles�, and homopolymers with N
=12 �crosses�.

TABLE II. Graph size during renormalization at four different
temperatures for homopolymers of different lengths.

N T=0.0 T=0.7 T=1.4 T=2.1

12 11120 5276 2684 1372

11 3313 1754 976 532

10 999 564 356 228

09 300 197 159 106

08 104 67 51 36

TABLE III. Total number of connections during renormalization
at four different temperatures for five hydrophobic homopolymers
of different lengths.

N T=0.0 T=0.7 T=1.4 T=2.1

12 73468 50802 17374 5700

11 20392 14974 7752 2456

10 5710 4236 2920 1600

9 1562 1280 1130 794

8 482 364 298 210
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m
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FIG. 10. Histograms of the multiplicities mi of each node of the
renormalized graph for the N=12 homopolymer at temperatures T
=0.7,1.4,2.1. Increasing temperatures are represented by lines of
increasing thickness.
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The presence of a unique metastable state around and
above Tf implies that, at these temperatures, long homopoly-
mers are characterized by the presence of an extended fast-
connected low-energy region where local rearrangements
take place more quickly than in the rest of the landscape.

The opposite scenario emerges when looking at shorter
chains where the fraction of low multiplicity nodes de-
creases. For example in Table IV we report, for the various
homopolymers, the fraction of nodes with multiplicity 1 at
different temperatures. This is the fraction of nodes still un-
touched by renormalization and, therefore, separated from
the rest of the NMS by steep activation barriers. Table IV
shows that short homopolymers are more affected by renor-
malization and loose most of their nodes of multiplicity 1.
This phenomenon might be due to two slightly different
mechanisms: either the low-energy node directly attracts low
multiplicity nodes or the renormalization process affects in
the same manner nodes of all multiplicities. In both cases the
previous argument about the spatial localization of low-
energy barriers near the native minimum falls and the land-
scape can no longer be divided in slow and fast regions.
Remarkably, the difference in the spatial distribution of en-
ergy barriers on the landscape described above arises inde-
pendently from the actual probability distribution of barrier
heights ��Vs� �see Fig. 9� which, we recall, is pretty much
size independent.

Finally, to document the relative importance of the fast-
connected central regions in the different sequences ana-
lyzed, we report in Table V the number of minima of the
potential attracted by the maximally growing node in the
graph. This almost always coincides with the minimal energy

node except for four low-temperature cases dubbed with a
star in the table. A comparison at the same temperature be-
tween homopolymers of different lengths shows that the
fraction of minima attracted by the minimal energy node �in
parenthesis in the table� grows with the chain length. It can
be observed that by adding the number of nodes at a given
temperature �Table II� to the number of minima coalesced to
the minimal energy node one gets a much higher proportion
of the total number of minima for long chains than for short
ones. For example, at T=2.1 the N=12 polymer has 8828
minima in the minimal energy node and 1372 nodes surviv-
ing on the graph. The latter nodes were much less affected by
the merging process, with only about a decrease in about
10% of their number. In the N=10 case the decrease is in-
stead of 35%, once again implying that coalescence is more
uniformly distributed in this graph.

In the previous section we documented the linear increase
in the average connectivity of the graph with the system size.
At finite temperatures this quantity displays a more complex
behavior, as shown in Table VI where the average connec-
tivity c of the renormalized graphs of the five homopolymers
is reported. After an initial growth the longer chains show a
decrease in the average connectivity with temperature while
the two shorter ones exhibit a growing connectivity up to
T=2.1. The temperature of peak connectivity diminishes
with the chain length.

Figure 11 shows the effect of temperature on the distribu-
tion of the connectivities ni for the homopolymer of chain
length 12 and 10 �inset�. While the total number of connec-
tions is almost invariant upon renormalization for the shorter
systems, the longer one shows a remarkable loss of connec-
tivity above ni=10. In both cases the growth of an isolated,
high connectivity region is observed. A closer inspection re-
veals that this region corresponds to the minimal energy
node that, while attracting its neighbors, gradually acquires
new connections. It is thus tempting to ascribe the observed
differences in average connectivity to the different rates of
coalescence to this node previously observed in long and
short chains. We remind that the average connectivity c de-
creases upon renormalization only if there are many shared
connections between the coalescing nodes. The average con-
nectivity increases significantly during the fast initial growth
of the “central” node, signaling that each coalescing node is
bringing new connections. As a consequence the ramifica-
tions of the central node are expanding in areas of the NMS
which were previously relatively remote in terms of connec-
tions. After that phase a decrease in connectivity begins,
showing that any new node attracted by the fastest growing

TABLE IV. Fraction of the nodes of the renormalized NMS
having multiplicity equal to one. Data refer to hydrophobic ho-
mopolymers of different lengths at various temperatures.

N T=0.7 T=1.4 T=2.1

12 0.67 0.65 0.67

11 0.67 0.63 0.65

10 0.70 0.62 0.59

9 0.70 0.65 0.61

8 0.65 0.52 0.41

TABLE V. Multiplicity of the maximally growing node during
renormalization at three different temperatures for homopolymers
of different lengths. When the maximally growing node does not
correspond to the minimal energy node data are labeled with a star.
The fraction of minima coalesced to the minimal energy node is
reported within parentheses.

N T=0.7 T=1.4 T=2.1

12 453 �0.04� 5908 �0.53� 8828 �0.79�
11 52 �0.02�� 1043 �0.31� 2324 �0.70�
10 38 �0.04�� 117 �0.18� 429 �0.43�
9 6 �0.03�� 18 �0.06� 57 �0.19�
8 4 �0.04�� 7 �0.06� 21 �0.20�

TABLE VI. The average connectivity c for five hydrophobic
homopolymers of different lengths at various temperatures.

N T=0 T=0.7 T=1.4 T=2.1

12 13.2 19.3 12.9 8.4

11 12.2 17.0 15.9 9.2

10 11.4 15.0 16.4 14.0

9 10.4 13.0 14.2 15.0

8 9.2 10.8 11.6 12.0
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node brings only a few new connections: the central node
has now a direct link to almost every portion of the NMS.

We now describe the spectral properties of the NMSs of
the sequence studied. More specifically we investigate their
spectral dimension because it determines the large scale dif-
fusivity on the graph. The spectral dimension describes the
spectral density of the discrete Laplacian matrix for small
eigenvalues. Since small eigenvalues correspond to long re-
laxation paths, high spectral dimensions imply a relaxation to
equilibrium that requires a long series of jumps between
nodes. Hence, although lacking any direct kinetic informa-
tion, the spectral dimension provides information about the
dynamics of the system. In Fig. 12 we illustrate the numeri-
cal procedure for the determination of the spectral dimension
for the N=9 homopolymer at various temperatures. After a
numerical diagonalization of the Laplacian matrix of the
NMS the resulting eigenvalues are rank ordered. The result-
ing rank-to-eigenvalue curve is proportional to the integrated

spectral density and can be fitted with a power law in order

to extract the spectral dimension d̄. It must be stressed that

one can rigorously assign a topological meaning to d̄ only for
asymptotically large graphs: several invariant properties of
the spectral dimension, such as invariance under local link
rewiring, only hold in the limit of infinite size. One might
thus try to estimate the effects of the finite size of the ana-
lyzed graphs by quantifying the amount of such noninvari-

ance. Before evaluating d̄ we therefore altered each NMS by
adding random links between second neighbors �nondirectly
connected nodes connected to each other by a third node�.
The procedure was repeated 50 times generating 50 different

realizations of each NMS and 50 different estimates of d̄ �see
Fig. 13 where a sample of the rank-to-eigenvalue plots ob-
tained after random rewirings is reported�. Since this quan-
tity should be invariant by link addition the standard devia-
tion of the values obtained with this procedure provides a
measure of the numerical error in its estimate. The resulting

averages �d̄� are reported in Table VII. The associated statis-
tical errors range from 3% to 5%.

The spectral dimension grows for the homopolymers
more quickly than the dimension of the associated configu-
rational space. On the other hand, at least for short polymers,
it does not appreciably change with temperature coherently
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FIG. 11. Histograms of the number ni of contacts of each node
for the N=12 and N=10 �inset� homopolymers at temperatures T
=0.0, 0.7, 1.4, 2.1 and T=0.0,2.1, respectively. Increasing tempera-
tures are represented by lines of increasing thickness.
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FIG. 12. Rank-to-eigenvalue plot for the Laplacian matrix of the
hydrophobic homopolymer of length 9 at increasing temperature:
T=0.0,0.7,1.4,2.1. The circles radius is proportional to tempera-
ture. Dashed lines represent least-square power-law fits to the data.
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FIG. 13. Rank-to-eigenvalue plot for the Laplacian matrix of the
hydrophobic homopolymer of length 12 for different random
rewirings.

TABLE VII. Average spectral dimensions of the five homopoly-
mers for different chain lengths at different temperatures. Data
marked with a star refer to spectra with a significant number of �
=1 eigenvalues. Missing data refer to cases where not enough
points where available below �=1 to allow a reliable fitting.

N T=0.0 T=0.7 T=1.4 T=2.1

12 16.4 16.4 8� 5.6�

11 8.8 12.4� � �

10 6.4 6.0 5.6 �

9 4.2 4.6 4.8 4.4

8 3.2 3.0 2.8 2.8
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with the expected isospectrality of the renormalization pro-
cedure. For longer polymers the spectral dimension estimate
d̄ is affected by an unexpected spectral feature: at a certain
temperature the Laplacian spectral density peaks around �
=1. It can be shown that these eigenvalues are due to nodes
connected to more than one leaf node �by leaf we mean a
node with only one link�. Initially the presence of a node
connected to two or more leafs is rare but, as renormalization
goes on, it tends to increase. The appearance of �=1 eigen-
values is therefore enhanced by a high coalescence rates. As
shown above, long homopolymers are indeed characterized
by the fast coalescing region of the lowest-energy minimum,
which explains the early appearance of the mark of multiple
leaf nodes in their spectra. This phenomenon is depicted in
Fig. 14 where the rank-to-eigenvalue plot for the N=12 at
various temperature is reported. Ranked data have been mul-
tiplied by an arbitrary factor to ease reading. At low tempera-
tures the curves are pretty much invariant and spectral den-
sity is conserved. At T=1.4, however, a step appears in the
curve at �=1 �corresponding to a Dirac 
 peak in the spectral
density coming from the abundance of leaf nodes�. Notably a
steep drop in the spectral dimension can be observed at the
same time and persist at higher temperatures while the step at
�=1 grows.

Table VII, however, shows that, although the appearance
of leaf nodes—labeled by stars in the table—is often associ-
ated with changes in the spectral dimension, the latter do not

share a clearly defined direction. In some cases �N=11� d̄
increases after the appearance of �=1 eigenvalues, while in
others �N=12� it decreases. Moreover, in a few other cases
the spectral dimension could not be estimated because not
enough data where available below �=1 �to allow a reliable
fit�, and fitting above this value does not seem correct since
rank-to-eigenvalue curves appear either to quickly lose any
scale-invariant character for �=1 or to display a markedly
different exponent �see the T=2.1 curve in Fig. 14�. Such
anomalies therefore suggest that the procedure here high-

lighted for the computation of the spectral dimension looses
meaning in presence of pronounced peaks in the spectral
density.

VII. HETEROPOLYMERS: TOPOLOGY AS A FUNCTION
OF SEQUENCE

The effect of the primary sequences on the topological
properties of the NMS is now determined by investigating
the two heteropolymers with 12 residues and by comparing
the results with those for to the N=12 homopolymer.

A first fundamental difference between the stable het-
eropolymer and the other sequences arises already at T=0
when considering the size of the NMS, which at this tem-
perature simply corresponds to the number of minima of the
potential energy. The strong energetic bias and the relative
lack of frustration of this system result in a much smaller
quantity of minima, 4128, than in the case of the weakly
biased unstable heteropolymer which has instead 13 394
minima. The latter is much more similar to the homopolymer
which, we recall, has 11 120 minima. The lower number of
possible kinetic traps to be overcome by the stable het-
eropolymer already suggests its higher folding propensity.
On the contrary the picture provided by considering NMS
connectivities is much less clear since the average number of
connecting saddles for each minimum is 16.0 for the stable
heteropolymer and 27.4 for the unstable one, while it was
13.2 for the homopolymer of equal length. No particular cor-
relation with structural stability can be therefore observed.

This scenario is further emphasized by a topological dif-
ference between the zero-temperature NMS of the stable het-
eropolymer and the other sequences �Fig. 15�. While the
spectral dimension of the unstable heteropolymer is compa-

rable to that of the homopolymer of equal length �d̄
=16.6�0.9 in the first case and d̄=16.4�0.9 in the latter�,
the stable folder is characterized by a much smaller spectral

dimension: d̄=10.3�0.6. These differences are preserved
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FIG. 14. Rank-to-eigenvalue plot for the Laplacian matrix of the
hydrophobic homopolymer of length 12 at increasing temperature:
T=0.0,0.7,1.4,2.1. Larger symbols correspond to higher tempera-
ture. Rank data were multiplied for an arbitrary factor to ease read-
ing. Dashed lines represent least-square power-law fits to the scale
invariant portion of the curves.

1

λ

10

100

rank

0.90.80.70.60.5

FIG. 15. Rank-to-eigenvalue plot for the Laplacian matrix of
unstable folder �squares�, stable folder �circles� and homopolymer
with N=12 at T=0. Continuous lines represent least-square power-
law fits to the data.
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also at higher temperatures since, also in this case, spectral
dimensions keep substantially unchanged until the appear-
ance of �=1 eigenvalues. We recall that the unstable het-
eropolymer and the N=12 homopolymer also share a very
similar ratio Tf /T�. The spectral dimension, a topological
quantity that describes relaxation dynamics, does therefore
correlate with the latter ratio, which is a thermodynamical
quantity.

This finding relates with analogous evidence �16� for a
two-dimensional toy model where a difference in the spectral
dimension between heteropolymers and homopolymers was
detected. In that case, however, the spectral dimension was
not found to depend on the stability of the native structure
but rather on the amount of heterogeneity in the sequence.
Different sequences displaying different folding behaviors
and landscape steepness but the same ratio of polar to hydro-
phobic beads shared the same spectral dimension. Moreover,
such a dependency only appeared in that model for finite-
temperature NMSs, while here it is evident already at T=0.

The two heteropolymers analyzed here share the same fast
decay of the tails of the energy barriers distribution seen for
the homopolymer �see inset in Fig. 9�. In the heteropolymer
case the decay is slightly faster and leads to a substantial
cutoff at Vs�80 for the unstable folder. A far more funda-
mental difference, however, arises at small energies. The un-
stable folder differs from the two other sequences in having a
much higher fraction of low barriers, Vs�10. Since this is
the region most affected by the renormalization procedure, it
is reasonable to expect a different behavior of this sequence
under renormalization. Indeed, the comparison of the topo-
logical changes induced by the renormalization process on
the NMSs of polymers characterized by different primary
sequences proves very instructive about the origin of the
above-mentioned leaf node phenomenon. It is not obvious
which physical meaning to assign to the gradual transforma-
tion of the NMS in a stellar graph characterized by a center
surrounded by leaf nodes. It is also equally nonintuitive what
relation might this process have with the thermodynamics of
the system. The analysis of the spectra of the sequences ana-
lyzed �see Table VIII� shows that �=1 eigenvalues always
become dominant at T� implying that at that temperature leaf
nodes become the only relevant feature of the NMS. In fact,
at T� the graph has already shrunk in size by more than one
order of magnitude and almost all of the missing nodes ap-
pear to have merged to the minimal energy node, which
seems thus to be the hot spot of renormalization also for
heteropolymers.

Analyzing the same indicators at lower temperatures �col-
umns referring to T=

2T�

3 in Table VIII� shows, however, a

marked difference in the progress of the appearance of leaf
nodes against other topological transformations of the NMS.
While at T=

2T�

3 the minimal energy node has eaten up al-
ready all the available configuration space, still the relative
amount of �=1 is significantly smaller than the value it takes
at T�. The appearance of leaf nodes seems therefore to be
intimately connected with the � transition in these se-
quences, depicting the moment in which all the configuration
space becomes equally accessible. In this condition the meta-
stable states still persisting as separate nodes are very un-
likely to have multiple connections because all of their
neighbors already collapsed on the minimal energy node. As
a consequence these nodes, which originally corresponded to
the frontier of the low-temperature NMS, have a large prob-
ability of becoming a leaf node shortly before coalescing
themselves to the minimal energy node.

The pace of this process is strongly sequence dependent
and does not show any clear correlation with the stability of
the native structure. It nonetheless appears to start at mark-
edly low temperatures for homopolymers.

Furthermore, we remember that the appearance of leaf
nodes also depends on chain length. Shorter polymers have a
less marked frequency of �=1 eigenvalues also in the prox-
imity of T� �Table VIII�. It is therefore worth stressing the
differences in the � transition in short and long polymers.
Regardless of chain length, the �-transition signals the tem-
perature at which all configuration space becomes equally
accessible. When this happens in short polymers, the land-
scape is still divided into different metastable states or,
equivalently, there are still kinetic barriers to be overcome to
access the whole configuration space. On the contrary, in
long polymers, at the � transition almost all the configura-
tion space belongs to the same stationary state and can be
quickly sampled without crossing kinetically relevant barri-
ers. This does not mean that large barriers are absent from
the energy landscape, on the contrary they are as common as
in short polymers. Their arrangement, however, is not ca-
pable of dividing the landscape into kinetically separate
metastable states.

VIII. CONCLUSIONS

We analyzed the thermodynamics as well as some metric
and topological properties of the NMS of short homopoly-
mers and heteropolymers in a coarse-grained off-lattice pro-
tein model. The homopolymers were hydrophobic in nature
and characterized by different lengths, while the two het-
eropolymers were chosen in order to ensure a marked differ-
ence in structural stability.

TABLE VIII. Number of surviving nodes, fraction of nodes in the minimal energy node and fraction of
eigenvalues �=1 for the three polymers of length 12 during renormalization.

Surviving nodes Multiplicity of largest node Eigenvalues with �=1

T=
2T�

3 T=T� T=
2T�

3 T=T� T=
2T�

3 T=T�

Stable12 155 73 0.94 0.97 0.52 0.74

Unstable12 402 170 0.96 0.99 0.37 0.91

Homo12 109 54 0.99 0.99 0.88 0.93
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The systems investigated exhibit a variety of thermody-
namical behaviors with respect to folding. While some se-
quences show all three classical protein conformational
arrangements—including the molten globule—others pass
directly from folded to swollen, thus reproducing the ten-
dency of stable folders to have high Tf. The model consid-
ered is therefore able of efficiently mimicking the differences
of folding propensities observed in real protein sequences.

We have employed a recently proposed procedure �16� to
generate the NMS at a finite temperature T, based on the
merging of nodes separated by energy barriers lower than T.
This renormalization procedure allows us to determine a par-
tition of the configuration space into dynamically separated
regions. We have thus studied the temperature dependence of
the NMS characteristic of each sequence. The analysis of the
topological properties of the NMS of homopolymers of dif-
ferent lengths highlights how the statistical distribution of
activation energies is not the only factor determining the be-
havior of the graph under renormalization: the spatial distri-
bution of the barriers also plays a crucial role. Indeed, al-
though investigated homopolymers share the same
distribution of energy barriers, their topology respond pretty
differently to an increase in temperature. While in long se-
quences the renormalization procedure mainly alters the low-
energy region of the landscape where metastable states
merge into a unique rapidly expanding macrostate, in shorter
sequences this growth is more uniformly distributed and
other, more distant metastable states might experience a sub-
stantial expansion. These differences in the renormalization
process are reflected in an early �low T� tendency to create
leaf nodes in the NMS of long sequences, both for ho-
mopolymers and heteropolymers. This phenomenon is inde-
pendent of the stability of the native structures of the se-
quences analyzed and completes around the � temperature,
where the configuration space mostly belongs to same meta-
stable state.

The spectral dimension of the same sequence at different
temperatures is approximately constant, at least before leaf
nodes appear. Given the same length, the spectral dimension
appears to be higher for the sequences characterized by un-
stable native structures. This finding suggests a nonobvious
link between thermodynamics and the dynamical properties
of these systems. Sequences characterized by a stable folded
state appear to be characterized by shorter and less compli-
cated relaxation paths. Indeed, the stable heteropolymer is
characterized by simpler connectivity also in terms of the
sheer number of nodes, which, compared to the other N
=12 sequences, ranges from one half �T=0� to one order of
magnitude less �T��.

Interestingly some of the features described above seem
to hold also for a simpler two-dimensional model investi-
gated in �16�. Also in that model the spatial distribution of
the barriers is crucial in shaping some properties of the en-
ergy landscape, namely the amount of kinetic traps. How-
ever, in that case only kinetic properties of the NMS were
affected and not its topology. On the contrary, in the model
here investigated topology is strongly influenced by the spa-
tial distribution of energy barriers. Finally, in both models
the spectral dimension helps in categorizing sequences ac-
cording to the complexity of their relaxation paths. In the
two-dimensional model, however, such a difference only
arises at finite temperature and is related to sequence frustra-
tion rather than to the stability of the native structure.
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